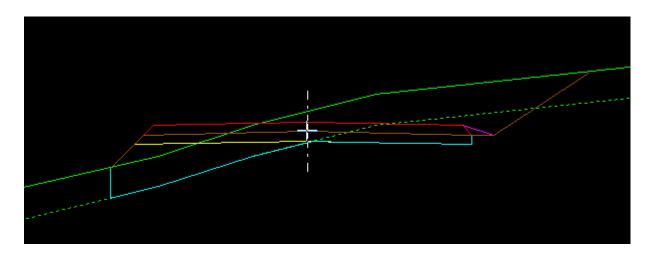
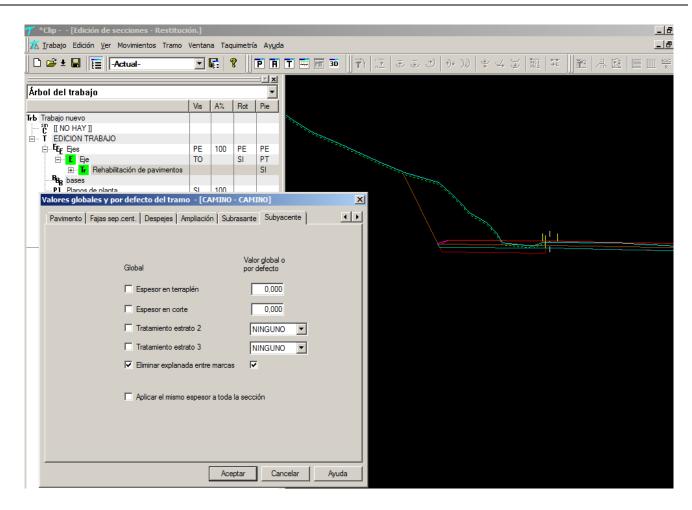

MODIFICACIONES DEL CLIP DE LA VERSIÓN 1.27.84.339 A LA VERSIÓN 1.28.88.348

Saneo de material Inadecuado.


Se añade la posibilidad de indicar al programa que genere un Saneo cuando el primer material definido en la tabla de Geología tiene indicado el "Uso" como material "Inadecuado".

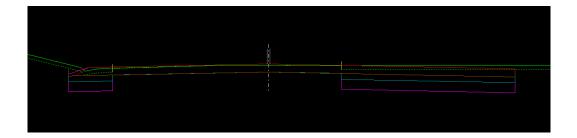
Una vez definido el uso del material en el catálogo correspondiente, se debe marcar la casilla en los datos globales del tramo para que el programa lo tenga en cuenta y genere de forma automática el dibujo y las cubicaciones del saneo hasta el fondo del material.


saneo												Pág. 1 11-11-2015
						MEDICI	ÓN DE MOVI	MIENTO DE	TIERRAS			
Terreno	derecha:	Ras tn	rnativa1 ante1									
Estación	As.Terr. S	up.Ocup.	V.T. Veq.	V.Expla.	V.Terra.	V.D.Tier.	<u>V. Saneo</u>	S.Expla.	S.Terra.	S.D.Tie.	S. Saneo	
0+000	0	0	0	.0	.0	_0	- 0	3,23	4,35	0,58	4,35	
0+100	932 932	1.404 1.404 1.507	1.404 1.404	323 323 323	590 590 624	57 57 331	557 557 497	3,23	5,98	0,94	5,48	
0+200	714 1.648	2.911	1.507 2.911	645	1.214	331 389 18.273	1.055	3,18	0,00	16,59	0,00	
0+300	0 1.648	3.840 6.751	3.840 6.751	318 964 318	0 1.214	18.273 18.662	0 1.055	3,18	0,00	330,40	0,00	
0+400	1.646	5.287 12.038	5.287 12.038	1.282	1.214	18.662 39.105 57.767	0 1.055	3,18	0,00	256,10	0,00	
0+500	897 2.544	2.623 14.661	2.623 14.661	322 1.604	3.324 4.538	7.717 65.484	842 1.896	3,28	161,68	0,00	26,88	
0+600	3.180 5.724	3.180 17.841	3.180 17.841	328 1.933	25.915 30.453	0 65.484	3.180 5.077	3,28	192,85	0,00	27,92	
0+700	2.880 8.604 2.209	2.880 20.721	2.880 20.721	328 2.261 328	20.044 50.497	0 65.484	2.880 7.957 2.209	3,28	174,41	0,00	27,31	
0+800	2.209 10.813 829	2.209 22.930	2.209 22.930	2.589	10.994 61.491	0 65.484	10.166	3,28	110,66	0,00	22,23	
0+854,464	829 11.642	948 23.879	948 23.879	177 2.768	2.626 64.117	68 65.552	775 10.941	3,18	3,72	9,32	3,72	

• <u>Nuevo criterio de subrasante y subyacente entre marcas de aprovechamiento de pavimento, ver. México.</u>

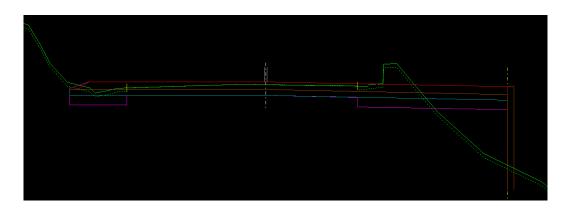
Se permite eliminar por tramos o de forma global la/s capa/s de subrasante y subyacente en la zona delimitada entre marcas de orilla de camino para los proyectos de modernización de carreteras.

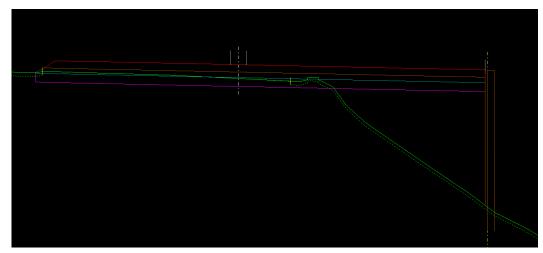
Se adjunta una pantalla del programa para ver donde se activa o desactiva la nueva opción.



A continuación se representan diferentes supuestos de aprovechamiento del pavimento existente que se pueden presentar:

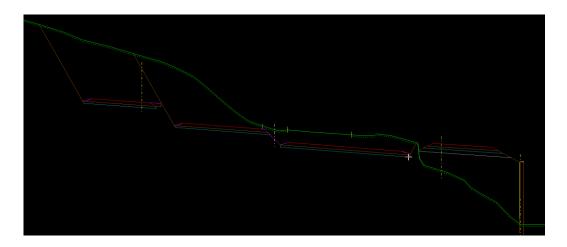
• CASO 1.


La capa de pavimento proyectada en la zona correspondiente a la calzada actual se encuentra con la rasante sensiblemente igual a la rasante del pavimento actual, se dispone sólo la capa de pavimento.


• <u>CASO 2.</u>

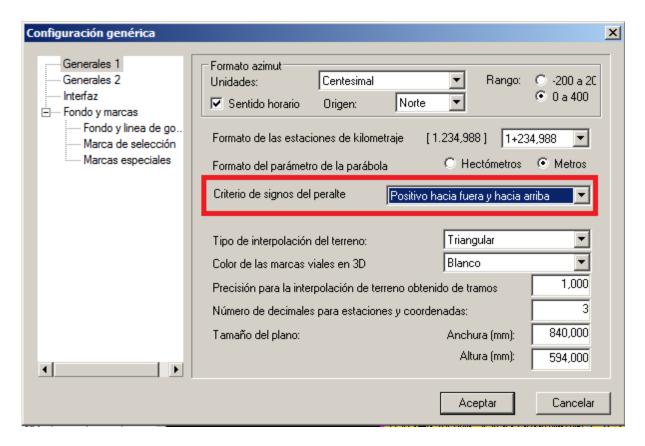
La capa de pavimento proyectada en la zona correspondiente a la calzada actual se encuentra con la rasante por encima de la rasante del pavimento actual pero la capa subrasante se encuentra entera bajo la rasante del pavimento actual, se dispone capa de subrasante pero no subyacente.

CASO 3


La capa de pavimento proyectada en la zona correspondiente a la calzada actual se encuentra con la rasante por encima de la rasante del pavimento actual y la capa subrasante se encuentra en parte por encima la rasante del pavimento actual, se dispone capa subyacente.

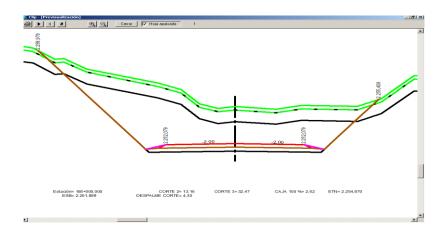
CASO 4

La capa de pavimento se encuentra toda ella en corte, no se pone capa subyacente.



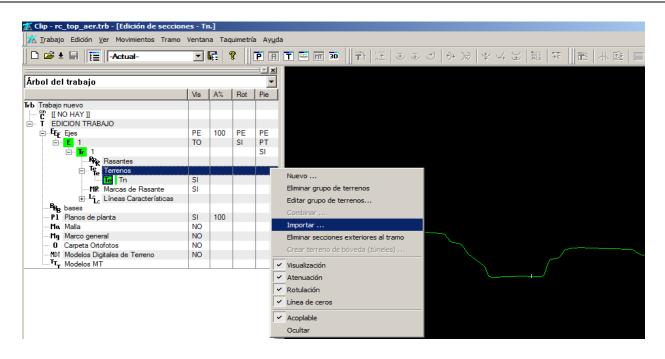
• Nuevo criterio de peraltes o sobreelevaciones.

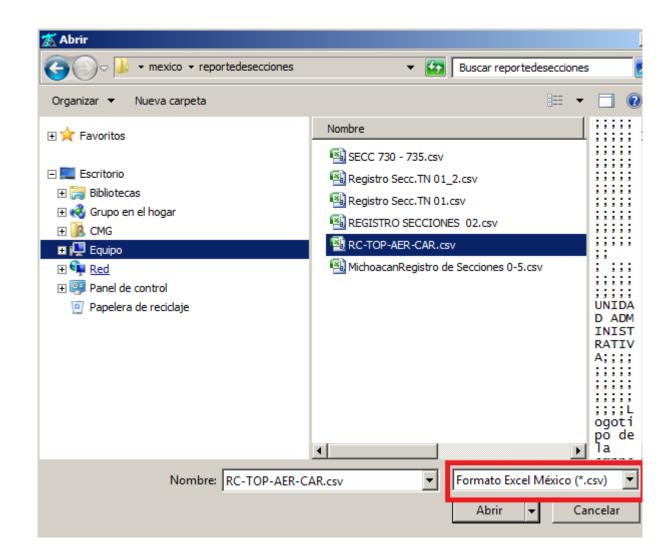
Consiste en que el valor de la sobreelevación es positivo cuando la rama de la calzada asciende desde el eje hasta el acotamiento y negativo en caso contrario como se representa en la siguiente figura



La opción se activa desde el menú Ver-Opciones de la aplicación en la siguiente ventana

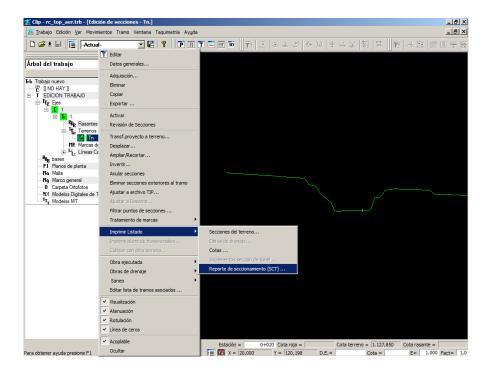
En el plano de secciones saldrían los signos de las sobreelevaciones según el criterio elegido. En la pantalla adjunta se representa una sección en recta o tangente


• Importar archivo de registro de secciones, ver. México.

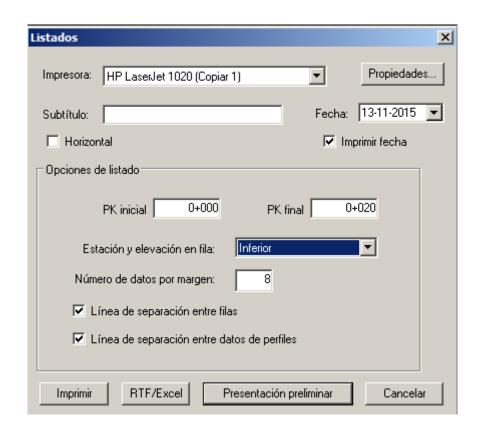

Se permiten importar los archivos del reporte de secciones de campo que suministran los técnicos de topografía. En la figura adjunta se puede ver el formato (puede haber variaciones que están contempladas en el importador desarrollado)

ABCDE	FGH	I J K	L M N	O P Q	R S T	UVW	X Y Z AAAE	BACADAE	AFAGAH	AI AJ AK	ALAMAN	AOAPAQ	ARASAA	AVAWAXA'A
SECREDARIA	9	UNIDAD ADMINISTRATIVA DIRECCIÓN SUBDIRECCIÓN DE DEPARTAMENTO DE REGISTRO DE SECCIONES TRANSVERSALES							Logotipo de la empresa					
												Hoja No.		de
CARRETER TRAMO ORIGEN	Α					E km PO DE EJE		(Indicar	si se trata	A km a de un e	je prelim	inar o de	finitivo)	
-31,12	-29,82	-26,76	-24,85	-21,90	-21,43	-18,65	00+000	1,97	3.86	4.76	9.38	12,83	14,71	17,85
13,11	10,94	9,09	8,07	1,83	0,14	-0,19	1127,37	0,02	-0,09	0,29	9,40	9,85	11,35	16,36
-62,84	-49,55	-45,16	-43,73	-41,50	-38,54	-35,46	,	20,07	25,17	26,72	33,58	60,89	67,52	73,52
26,86	25,38	25,14	24,16	20,73	19,12	18,81		18,77	19,66	20,08	19,34	17,51	17,08	17,42
					-101,02	-73,59		76,61	81,65	85,02	89,10	92,82	101,09	
					29,56	27,31		16,20	19,11	18,74	12,81	11,78	11,33	
-37,28	-35,15	-31,82	-23,59	-21,03	-19,61	-3,62	00+020	4,61	6,06	8,11	9,05	12,32	14,01	16,20
18,53	18,13	12,76	5,62	0,00	-0,41	0,09	1127,85	-0,12	0,82	7,77	9,38	9,72	11,37	14,88
	-101,39	-69,74	-59,33	-48,07	-43,37	-40,43		20,26	25,05	27,28	49,54	51,31	53,93	61,39
	27,90	25,96	24,82	24,34	23,64	19,41		16,07	16,22	15,80	15,30	13,78	12,14	11,97
								75,36	101,14					
								11,39	10,88					

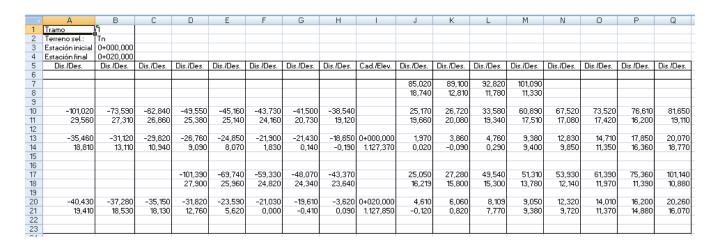
La opción se encuentra en el grupo de terrenos del árbol de trabajo en la opción de importar formato Excel México (archivo .csv)


El archivo que se importa es un formato csv (ASCII separado por comas que previamente se ha exportado desde Excel).

El asistente de importación solicita que se indique la fila, columna del eje, separadores de campo, decimal y de miles así como las líneas de cabecera tal como figura en la siguiente pantalla.

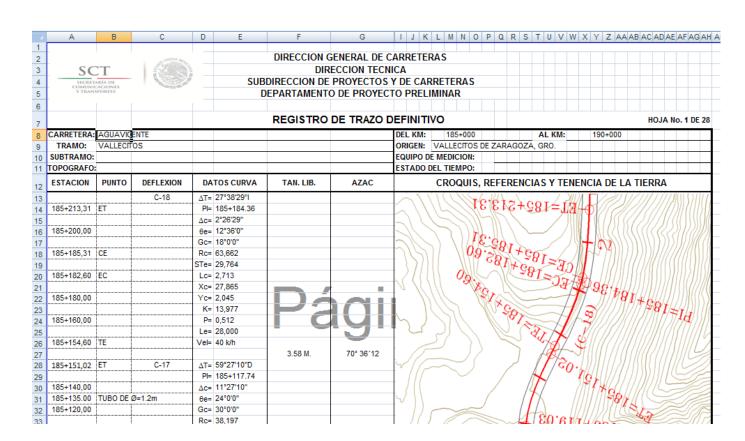

• Listado de Secciones del terreno SCT, ver. México.

Nuevo listado relativo a las secciones del terreno adaptado a las especificaciones de SCT Se obtiene desde el terreno en cuestión, Imprimir Listados, Reporte de seccionamiento

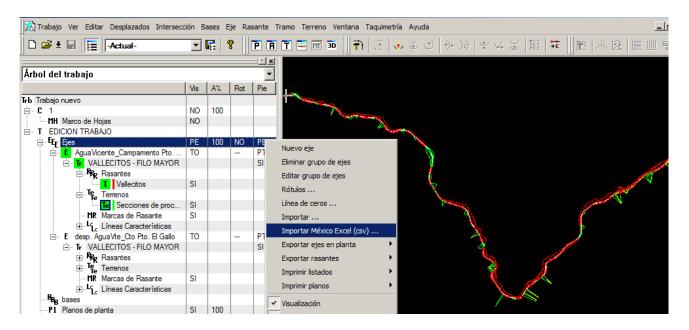


Se puede exportar a .rtf (Word) o .xls (Excel) o imprimirlo y/o previsualizarlo directamente desde CLIP.

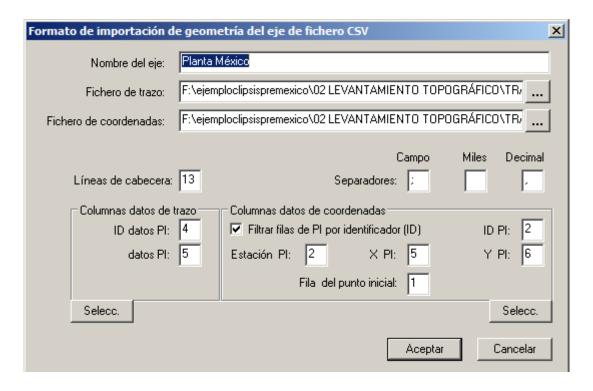
El aspecto del reporte sería el siguiente


• <u>Importación del eje del proyecto a través de los registros de trazo y coordenadas, ver. México.</u>

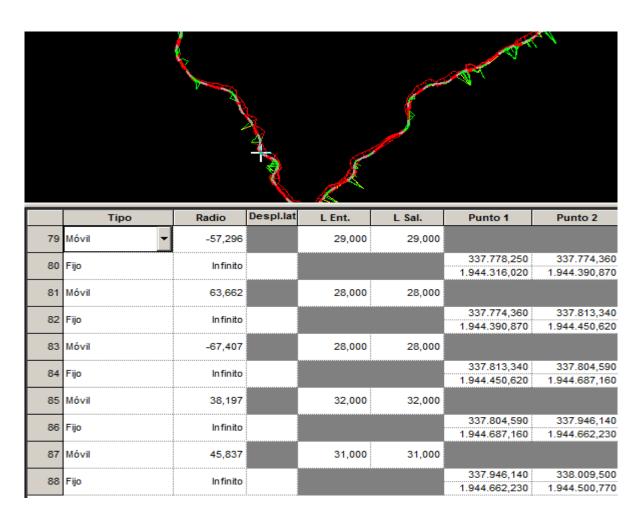
A través de los archivos de trazo y coordenadas en formato .csv (se exportan directamente desde excel) se obtiene el eje del proyecto en Clip.


Los archivos originales tendrían el siguiente aspecto

SECRETAI COMUNICA Y TRANSF	ACIONES			SUBDI	RECCION DI PARTAMEN	RECCION E PROYEC TO DE PRO	TECNICA TOS Y DE DYECTO I	CARI	BETE	R	IITIVO)						!
CARRETERA:	AGRA TICEBTE					DE km:			185+11	17,74			A km:			185	5+877,07	
TRAMO:	TALLECITOS					ORIGEN:		PALLECIT	•5 BE 2	*****	A, CR+.		-					
SUBTRAMO:						•							-		He/a:		DE:	,
JOB ITIAI-IO.	PUNTO	SUBTANGENT		SUBTANGENT		DEFLEX	/IONE 6	ZIMUT	CAL	CIII AD	1	В	DOVEC	CIONES		_	COOPE	DEMADAS
ESTACION	OBSERVADO	_	TANGENTE	E	DISTANCIA	IZQ	DER.	GRADO		SEG	SENO	+ E		COSENC		-\$	X	Y
	PI- 1#5+117,74						DEN.	70	36	12	0,9432		-	0,3321	———		334.959,24	
						†		†	l	l 	†		·····	.,				1
PI- 185+117,74	ET- 185+151,02		1	38,35		1	59:27:10*	70	36	12	0,9432	29,360		0,3321		-24,680	334.988,60	1.944.444,3
ET- 185+151,02	TE- 185+154,60		3,58			I		70	36	12	0,9432	2,730		0,3321		-2,300	334.991,33	1.944.442,0
TE- 185+154,60	PI- 185+184,36	29,76						70	36	12	0,9432	22,780		0,3321		-19,150	335.014,11	1.944.422,9
			ļ		ļ				ļ <u>.</u>	<u></u>	l							
PI- 1\$5+117,74	PI- 1#5+1#4,30	<u> </u>			71,69			130	3	15	0,7654	54,870		-0,6435		-46,130	335.014,11	1.944.422,
PI- 185+184,36	ET- 185+213.31		 	29,76	+	27:38:29*		130	3	15	0.7654	29.070		-0.6435		-6,400	335.043.18	1,944,416,5
ET- 185+213,31	TE- 185+386,05		172,74	27,16	+	21 30 27		130	3	15	0,7654	168,710	ļ	-0,6435		-37,140	335.211,89	1.944.379,3
TE- 185+386,05	PI- 185+418,78	32,73	†		†	†		130	3	15	0,7654	31,960	·····	-0,6435		-7,030	335.243,85	1.944.372,3
			†		•	†		†			tt		·····					
PI- 1#5+1#4,36	PI- 125+412,7	F	İ		235,23	İ		102	24	50	0,9766	229,740		-0,2150		-50,570	335.243,#5	1.944.372,
								Ι										
PI- 185+418,78	ET- 185+450,06		ļ	32,73			35:60'20"	102	24	50	0,9766	22,150		-0,2150		-24,110	335.266,00	1.944.348,2
ET- 185+450,06	TE- 185+480,52		30,46					102	24	50	0,9766	20,600		-0,2150		-22,420	335.286,60	1.944.325,8
TE- 185+480,52	PI- 185+519,71	39,20						102	24	50	0,9766	26,530		-0,2150		-28,860	335.313,13	1.944.296,9
PI- 1#5+41#,7#	PI- 1#5+519.7	. 	 		102,39			137	25	6	0,6766	69,280		-0,7363		-75,390	335.313,13	1.944.296,
		•	 	-						×	1,	07,500						
PI- 185+519,71	ET- 185+553,38		†	39,20		61:17:33*		137	25	6	0,6766	38,050		-0,7363	9,390		335.351,18	1.944.306,3
ET- 185+553,38	TE- 185+562,87		9,49		İ	1		137	25	6	0,6766	9,220	l	-0,7363	2,280		335.360,40	1.944.308,6
TE- 185+562,87	PI- 185+593,87	31,00	1		1	1		137	25	6	0,6766	30,090		-0,7363	7,430		335.390,49	1.944.316,0
								1			1 1							
PI- 1#5+519,71	PI- 1#5+593,#	7			79,69	ļ		76	7	52	0,9708	77,360		0,9708	19,100		335.390,49	1.944.316,
			ļ		ļ	ļ		· 	ļ <u>.</u>	ļ <u></u>	1		ļ				l	l
PI- 185+593,87 ET- 185+624,03	ET- 185+624,03 TE- 185+630,33		6.20	31,00		ļ	27:19'43"	76	7 7	52 52	0,9708	30,150	ļ	0,9708		-7,210 -1,470	335,420,64 335,426,76	1.944.308,8
TE- 185+630,33	PI- 185+661.95	31,62	6,30		 	ł		76		52	0,9708	6,120 30,760	····	0,9708		-7,360	335.426,76	1.944.307,3
.=- 102.020,23	102.001,73		t		t	t		+'-	<u>-</u>	·····	1.000	20,100	l					1
PI- 1#5+5 9 3,#7	PI- 125+661,9	5	†		62,92	İ		103	27	27	0,9725	67,030	l	-0,2327		-16,040	335.457,52	1.944.300,
		Ī	Ī		Ī	Ī		I		l	I							1
PI- 185+661,95	ET- 185+693,39		I	31,62	I	13:13:27*		103	27	27	0,9725	31,630		-0,2327		-0,130	335.489,15	1.944.299,9
ET- 185+693,39	TE- 185+695,80		2,41			ļ		103	27	27	0,9725	2,410		-0,2327		-0,020	335.491,56	1.944.299,
TE- 185+695,80	PI- 185+753,52	57,72	ļ			ļ		103	27	27	0,9725	57,720		-0,2327		-0,220	335.549,28	1.944.299,
		<u>.</u>			ļ	ļ		+	ļ <u></u>		1							l
PI- 1#5+661,95	PI- 1#5+753,5	<u> </u>			91,75			90	13	52	1,0000	91,760	ļ	-0,0040	ļ	-0,370	335.549,2#	1.944.299,
	I	1	1	I	1	1		1		ı	ı I		1	1		1		1



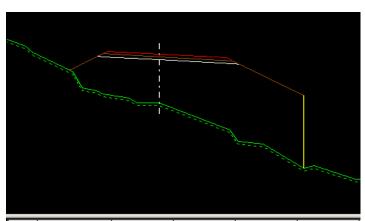
La opción se selecciona desde el grupo de ejes en planta del árbol de trabajo, Importar México Excel (csv).


El importador nos solicitará una serie de datos para poder contemplar todas las variantes en el contenido de los archivos excel originales. En la pantalla inferior aparecen los datos necesarios para poder realizar la importación del eje.

Al aceptar se podrá acceder a la edición de los datos de la planta que se ha importado.

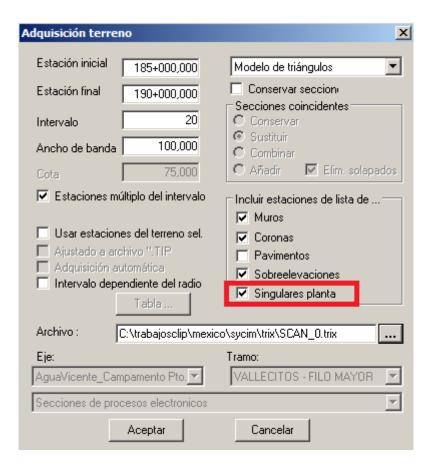
Las rectas o tangentes se mecanizarán como elementos Fijos y las curvas con sus espirales como Móviles.

Mejora en la importación de los archivos del programa CurvaMasa de la SCT, ver. México.


Se consideran diferentes taludes a izquierda y derecha generándose diferentes materiales en el catálogo que se asocian automáticamente a la tabla de geología.

Æ.	🌋 Editor de Materiales [Editando Materiales Trabajo]													
	Nombre	Uso	Grupo	Tal.l.	Tal.D.	Coef. var. vol.	Color	Α	В	С				
1	Despalme	Usos	Despalme	1,000	1,000	1,000	Blanco Sól	100,000	0,000	0,000				
2	Estrato 2	Usos	Tierra	1,000	1,000	1,000	Verde osc	100,000	0,000	0,000				
3	Estrato 3	Usos	Roca dura	1,000	1,000	1,000	Gris oscur	100,000	0,000	0,000				
4	Despalme_075075	Usos	Despalme	0,750	0,750	0,960	Blanco Sól	60,000	40,000	0,000				
5	Estrato_2_604000075075	Usos	Tierra	0,750	0,750	0,960	Blanco Sól	60,000	40,000	0,000				
6	Estrato_3_006040075075	Usos	Roca dura	0,750	0,750	1,070	Blanco Sól	0,000	60,000	40,000				
7	Estrato_2_008020075075	Usos	Tierra	0,750	0,750	1,030	Blanco Sól	0,000	80,000	20,000				
8	Estrato_3_004060075075	Usos	Roca dura	0,750	0,750	1,100	Blanco Sól	0,000	40,000	60,000				
9	Estrato_3_004060050075	Usos	Roca dura	0,500	0,750	1,100	Blanco Sól	0,000	40,000	60,000				
1	Despalme_050075	Usos	Despalme	0,500	0,750	1,030	Blanco Sól	0,000	80,000	20,000				
1	Estrato_2_008020050075	Usos	Tierra	0,500	0,750	1,030	Blanco Sól	0,000	80,000	20,000				
1 2	Despalme_075050	Usos	Despalme	0,750	0,500	1,030	Blanco Sól	0,000	80,000	20,000				
1	Estrato_2_008020075050	Usos	Tierra	0,750	0,500	1,030	Blanco Sól	0,000	80,000	20,000				
1 4	Estrato_3_004060075050	Usos	Roca dura	0,750	0,500	1,100	Blanco Sól	0,000	40,000	60,000				

Se importan en la tabla de muros los que están definidos en un solo P.K. en el archivo *.mur de los procesos electrónicos de CM como se ven en las pantallas inferiores.



	Esta. Ini.	Dista. Ini.	Esta. Fin.	Dista. Fin.	Margen
1	185+280,00	4,500	185+280,0	4,500	Derecha
2	185+420,00	10,000	185+426,0	10,000	Derecha
3	185+426,00	10,000	185+427,0	10,000	Derecha
4	185+482,00	4,500	185+482,0	4,500	Derecha
5	185+800,00	4,500	185+800,0	4,500	Derecha
6	186+600,00	4,500	186+600,0	4,500	Derecha
7	186+887,00	4,500	186+897,0	4,500	Derecha
8	186+897,00	4,500	186+900,0	4,500	Derecha
9	186+956,00	4,500	186+960,0	4,500	Derecha
10	186+960,00	4,500	186+966,0	4,500	Derecha

Adquisición de secciones del terreno tomado mediante Lidar en las estaciones singulares en planta (TE-EC-CE-ET).

La opción se activa desde el menú de Adquisición del terreno en cuestión según figura en la pantalla inferior.

